Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Molecular Microbiology, 4(36), p. 806-816, 2000

DOI: 10.1046/j.1365-2958.2000.01910.x

Links

Tools

Export citation

Search in Google Scholar

PAS Domain Residues Involved in Signal Transduction by the Aer Redox Sensor of Escherichia coli

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

PAS domains sense oxygen, redox potential and light, and are implicated in behaviour, circadian rhythmicity, development and metabolic regulation. Although PAS domains are widespread in archaea, bacteria and eukaryota, the mechanism of signal transduction has been elucidated only for the bacterial photo sensor PYP and oxygen sensor FixL. We investigated the signalling mechanism in the PAS domain of Aer, the redox potential sensor and aerotaxis transducer in Escherichia coli. Forty-two residues in Aer were substituted using cysteine-replacement mutagenesis. Eight mutations resulted in a null phenotype for aerotaxis, the behavioural response to oxygen. Four of them also led to the loss of the non-covalently bound FAD cofactor. Three mutant Aer proteins, N34C, F66C and N85C, transmitted a constant signal-on bias. One mutation, Y111C, inverted signalling by the transducer so that positive stimuli produced negative signals and vice versa. Residues critical for signalling were mapped onto a three-dimensional model of the Aer PAS domain, and an FAD-binding site and 'active site' for signal transduction are proposed.