Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 15(99), p. 9745-9749, 2002

DOI: 10.1073/pnas.152168599

Links

Tools

Export citation

Search in Google Scholar

Glutathionylation of human thioredoxin: A possible crosstalk between the glutathione and thioredoxin systems

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To identify proteins undergoing glutathionylation (formation of protein-glutathione mixed disulfides) in human T cell blasts, we radiolabeled the glutathione pool with 35 S, exposed cells to the oxidant diamide, and analyzed cellular proteins by two-dimensional electrophoresis. One of the proteins undergoing glutathionylation was identified by molecular weight, isoelectric point, and immunoblotting as thioredoxin (Trx). Incubation of recombinant human Trx with glutathione disulfide or S -nitrosoglutathione led to the formation of glutathionylated Trx, identified by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry. The glutathionylation site was identified as Cys-72. Glutathionylation of rhTrx abolished its enzymatic activity as insulin disulfide reductase in the presence of NADPH and Trx reductase. Activity was, however, regained with sigmoidal kinetics, indicating a process of autoactivation due to the ability of Trx to de-glutathionylate itself. These data suggest that the intracellular glutathione/glutathione disulfide ratio, an indicator of the redox state of the cell, can regulate Trx functions reversibly through thiol-disulfide exchange reactions.