Published in

Taylor and Francis Group, Journal of Biomaterials Science, Polymer Edition, 7(23), p. 955-972, 2012

DOI: 10.1163/092050611x566801

Links

Tools

Export citation

Search in Google Scholar

Synthesis, Evaluation and Preliminary Antibacterial Testing of Hybrid Composites Based on Urethane Oligodimethacrylates and Ag Nanoparticles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of urethane dimethacrylates differing structurally by the nature of the spacer (PTHF, PCL, PEG) and the presence or absence of the carboxylic acid groups was synthesized via an isocyanate route frequently encountered in ionomer chemistry. (1)H-NMR and FT-IR spectroscopy confirmed the structure of the macromers. Subsequently, the progress of photo-polymerization of all dimethacrylates under UV irradiation was investigated by FT-IR spectroscopy and photo-DSC with respect to conversion and polymerization rate using Irgacure as an initiator. The results of spectroscopic analysis suggested the lower reactivity of some non-carboxylic analogues during the formation of cross-linked polymers, the degree of conversion depending on the structure and viscosity. Photo-polymerization may provide many advantages for incorporating silver nanoparticles (2.5 wt%) into macromers in order to obtain hybrid nanocomposite films with controllable thickness and hydrophobicity. Combined analyses of UV spectroscopy and transmission electron microscopy confirmed the existence of nanosized silver (mean diameter 12±0.7 nm) uniformly distributed in the polymer matrix. Preliminary results concerning the antibacterial activity of some composite films (thickness approx. 24 μm) showed that the obtained nanomaterial could have an excellent bactericidal effect and effectiveness in reducing bacterial growth (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923).