Published in

Elsevier, Science of the Total Environment, 11(409), p. 2040-2048

DOI: 10.1016/j.scitotenv.2011.01.055

Links

Tools

Export citation

Search in Google Scholar

In vitro steroidogenic effects of mixtures of persistent organic pollutants (POPs) extracted from burbot (Lota lota) caught in two Norwegian lakes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study investigated the effects of two mixtures of persistent organic pollutants (POPs) on steroidogenesis in the H295R cell line. The two mixtures were obtained from the livers of burbot (Lota lota) caught in two Norwegian lakes (Mjøsa and Losna) with different contaminant profiles. Steroid hormone levels in the cell culture medium and mRNA levels of 16 genes involved in steroidogenesis were investigated. The crude Lake Mjøsa extract had to be diluted ten times more than the Lake Losna extract in order to prevent cytotoxicity. The ten times diluted Lake Mjøsa mixture had higher levels of DDT and derivates (∑DDTs, 1.7 times) and brominated flame retardants (∑BDEs and HBCD, 15-25 times) than the Lake Losna mixture, which, on the other hand, had higher concentrations of ∑PCBs (1.5 times higher) and also of HCB, ∑HCH isomers and ∑chlordane isomers (5-20 times higher). In the cell culture media, only cortisol levels were increased at the highest exposure concentration to the Lake Mjøsa mixture, while both cortisol and estradiol levels were increased following exposure to the two highest Lake Losna mixture exposure concentrations. Testosterone levels decreased only at the highest exposure concentration of the Lake Losna mixture. Multivariate models suggested that ∑PCBs, and to a lesser extent ∑DDTs, were responsible for the cortisol responses, while estradiol and testosterone alterations were best explained by HCB and ∑PCBs, respectively. Exposure to the mixtures generally increased mRNA levels, with smaller effects exerted by the Lake Mjøsa mixture than the Lake Losna mixture. It was concluded that both mixtures affected steroidogenesis in the H295R cells. Small differences in mixture composition, rather than the high content of brominated flame retardants in the Lake Mjøsa mixture, were suggested to be the most probable reason for the apparent differences in potencies of the two mixtures.