Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, Aerosol Science and Technology, 4(45), p. 533-542, 2011

DOI: 10.1080/02786826.2010.547889

Links

Tools

Export citation

Search in Google Scholar

Particle Size Magnifier for Nano-CN Detection

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new particle size magnifier (PSM) for detection of nano-CN as small as 1 nm in mobility diameter was developed, calibrated and tested in atmospheric measurements. The working principle of a PSM is to mix turbulently cooled sample flow with heated clean air flow saturated by the working fluid. This provides a high saturation ratio for the working fluid and activates the seed particles and grows them by condensation of the working fluid. In order to reach high saturation ratios, and thus to activate nano-CN without homogeneous nucleation, diethylene glycol was chosen as the working fluid. The PSM was able to grow nano-CN to mean diameter of 90 nm, after which an ordinary condensation particle counter was used to count the grown particles (TSI 3010). The stability of the PSM was found to be good making it suitable for stand-alone field measurements. Calibration results show that the detection efficiency of the prototype PSM + TSI 3010 for charged tetra-alkyl ammonium salt molecules having mobility equivalent diameters of 1.05, 1.47, 1.78, and 2.57 nm are 25, 32, 46, and 70%, respectively. The commercial version of the PSM (Airmodus A09) performed even better in the smallest sizes the detection efficiency being 51% for 1.47 nm and 67% for 1.78 nm.