Published in

Elsevier, Journal of Molecular Biology, 2(371), p. 388-395, 2007

DOI: 10.1016/j.jmb.2007.05.072

Links

Tools

Export citation

Search in Google Scholar

Yeast Mitochondrial ADP/ATP Carriers Are Monomeric in Detergents as Demonstrated by Differential Affinity Purification

Journal article published in 2007 by Lisa Bamber, Dirk-Jan Slotboom, Edmund R. S. Kunji ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Most mitochondrial carriers carry out equimolar exchange of substrates and they are believed widely to exist as homo-dimers. Here we show by differential tagging that the yeast mitochondrial ADP/ATP carrier AAC2 is a monomer in mild detergents. Carriers with and without six-histidine or hemagglutinin tags were co-expressed in defined molar ratios in yeast mitochondrial membranes. Their specific transport activity was unaffected by tagging or by co-expression. The co-expressed carriers were extracted from the membranes with mild detergents and purified rapidly by affinity chromatography. All of the untagged carriers were in the flow-through of the affinity column, whereas all of the tagged carriers bound to the column and were eluted subsequently, showing that stable dimers, consisting of associated tagged and untagged carriers, were not present. The specific inhibitors carboxyatractyloside and bongkrekic acid and the substrates ADP, ATP and ADP plus ATP were added during the experiments to determine whether lack of association might have been caused by carriers being prevented from cycling through the various states in the transport cycle where dimers might form. All of the protein was accounted for, but stable dimers were not detected in any of these conditions, showing that yeast ADP/ATP carriers are monomeric in detergents in agreement with their hydrodynamic properties and with their structure. Since strong interactions between monomers were not observed in any part of the transport cycle, it is highly unlikely that the carriers function cooperatively. Therefore, transport mechanisms need to be considered in which the carrier is operational as a monomer.