Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Biomedical Engineering, 8(54), p. 1490-1498, 2007

DOI: 10.1109/tbme.2007.900815

Links

Tools

Export citation

Search in Google Scholar

Theoretical Study on the Effect of Sensor Contact Force on Pulse Transit Time

Journal article published in 2007 by Xiao-Fei Teng, Yuan-Ting Zhang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pulse transit time (PTT) has been widely used for noninvasive examination of the arterial viscoelastic properties, such as elasticity, compliance, and stiffness of the vessel walls. PTT is usually determined as the time interval between the peak of the electrocardiogram R wave and the foot of the photoplethysmogram (PPG). However, it was observed that the PPG is affected by the applied contact force between the photoplethysmographic sensor and the measurement site, e.g., finger. In this study, the nonlinear biomechanical properties of the finger arterial wall were considered when investigating the changes in PTT with varying contact force. Emphasis was placed on the changes in the shape of the arterial wall pressure-volume curve. The simulation results indicated that at positive transmural pressure, PTT increased with the applied contact force, reaching the maximum at zero transmural pressure and remaining at a constant level at negative transmural pressure. The theoretical analysis was further verified by the experiments carried out on thirty young subjects and six elderly subjects using twelve discrete levels of contact force.