Dissemin is shutting down on January 1st, 2025

Published in

2008 IEEE International Symposium on Information Theory

DOI: 10.1109/isit.2008.4595368

Links

Tools

Export citation

Search in Google Scholar

Large deviations for constrained pattern matching

Proceedings article published in 2008 by Yongwook Choi ORCID, Wojciech Szpankowski
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the constrained pattern matching one searches for a given pattern in a constrained sequence, which finds applications in communication, magnetic recording, and biology. We concentrate on the so-called (d, k) constrained binary sequences in which any run of zeros must be of length at least d and at most k, where 0 les d Lt k. In our previous paper [2] we established the central limit theorem (CLT) for the number of occurrences of a given pattern in such sequences. Here, we present precise large deviations results, often used in diverse applications. In particular, we apply our results to detect under- and over-represented patterns in neuronal data (spike trains), which satisfy structural constraints that match the framework of (d, k) binary sequences. Among others, we obtain justifiably accurate statistical inferences about their biological properties and functions. Throughout, we use techniques of analytic information theory such as combinatorial calculus, generating functions, and complex asymptotics.