Published in

Genetics Society of America, G3, 1(2), p. 71-78, 2012

DOI: 10.1534/g3.111.000869

Links

Tools

Export citation

Search in Google Scholar

Genome-Wide Survey of Large Rare Copy Number Variants in Alzheimer's Disease Among Caribbean Hispanics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Abstract Recently genome-wide association studies have identified significant association between Alzheimer’s disease (AD) and variations in CLU, PICALM, BIN1, CR1, MS4A4/MS4A6E, CD2AP, CD33, EPHA1, and ABCA7. However, the pathogenic variants in these loci have not yet been found. We conducted a genome-wide scan for large copy number variation (CNV) in a dataset of Caribbean Hispanic origin (554 controls and 559 AD cases that were previously investigated in a SNP-based genome-wide association study using Illumina HumanHap 650Y platform). We ran four CNV calling algorithms to obtain high-confidence calls for large CNVs (>100 kb) that were detected by at least two algorithms. Global burden analyses did not reveal significant differences between cases and controls in CNV rate, distribution of deletions or duplications, total or average CNV size; or number of genes affected by CNVs. However, we observed a nominal association between AD and a ∼470 kb duplication on chromosome 15q11.2 (P = 0.037). This duplication, encompassing up to five genes (TUBGCP5, CYFIP1, NIPA2, NIPA1, and WHAMML1) was present in 10 cases (2.6%) and 3 controls (0.8%). The dosage increase of CYFIP1 and NIPA1 genes was further confirmed by quantitative PCR. The current study did not detect CNVs that affect novel AD loci identified by recent genome-wide association studies. However, because the array technology used in our study has limitations in detecting small CNVs, future studies must carefully assess novel AD genes for the presence of disease-related CNVs.