Published in

Wiley, Advanced Functional Materials, 7(26), p. 1077-1084, 2015

DOI: 10.1002/adfm.201504729

Links

Tools

Export citation

Search in Google Scholar

Energy level bending in ultrathin polymer layers obtained through Langmuir Shafer deposition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The semiconductor–electrode interface impacts the function and the performance of (opto)electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution-processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer–electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, Langmuir–Shäfer-manufactured homogenous mono- and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer–electrode interface and opens up for new high-performing devices based on ultrathin semiconducting polymers.