Elsevier, Quaternary Science Reviews, 11-12(30), p. 1368-1395, 2011
DOI: 10.1016/j.quascirev.2010.07.020
Full text: Download
Large-scale fluctuations in global climate and resulting changes in ecology had a profound effect on human evolution and dispersal. Though hominin remains are scarce, studies focussing on the more abundant records of fossil land mammal communities can contribute greatly to our knowledge of the palaeoenvironmental circumstances that influenced and directed the global spread of hominins. To produce a comprehensive and accurate account of the evolution of western Palaearctic habitat diversity between 2.6 and 0.4 Ma BP, information generated from large mammal communities from 221 key sites has been included in this study.The palaeoecological conditions of the western Palaearctic during the Early and early Middle Pleistocene were principally controlled by the following key factors: (1) a widespread trend of temperature decrease, (2) the periodicity of the global temperature record, (3) the intensity of single climatic stages, (4) the temporal pattern of climatic variation, (5) geographical position, and (6) the distribution of continental water resources. A general picture of the evolution of western Palaearctic habitat diversity saw the replacement of extensive forested terrain by an alternating sequence of varied savannah-like and forested habitats during the 2.6–1.8 Ma span, as well as an alternation between different types of predominantly open habitats between 1.8 and 1.2 Ma. Both of these processes were governed by 41 ka temperature periodicity. During the 1.2–0.9 Ma time span, irregular climatic fluctuations were more common and habitat variability increased. The subsequent 0.9–0.4 Ma interval, a period controlled by 100 ka periodicity, was by comparison more stable, with longer climatic cycles alternating between open and forested landscapes. During the entire Early and early Middle Pleistocene, assemblages of large mammal communities reveal a distinct trend of decreasing continentality between Eastern and South-Eastern Europe on the one hand, and South-Western and North-Western Europe on the other. This trend was due to the effect of the Atlantic Ocean, while in Southern Europe the relatively low continentality was balanced by influences from the Mediterranean Sea.When plotted against evidence of hominin occurrence, the data on western Palaearctic habitat diversity inferred from large mammal communities indicate clear environmental stimuli for the earliest human dispersal in Europe. These are: (1) a wide range of habitats, implying a high diversity of resources; (2) mild climates with low seasonality, implying a lack of strong environmental fluctuations. Around 1.8 Ma at the latest, hominins of African origin entered the western Palaearctic for the first time, taking advantage of the diversity of habitats and resources, particularly along large river systems. Their subsequent westward spread between 1.7 and 1.3 Ma was restricted to Mediterranean-influenced areas, which offered a high variability of habitats and relatively low seasonality. The increase in environmental diversity, which occurred from 1.2 Ma onwards, opened up South-Eastern and Eastern Europe for hominin occupation. According to the available records, North-Western and Central Europe were initially colonized during late Early to early Middle Pleistocene interglacials, when these regions experienced periods of low seasonality and considerable habitat diversity.