Published in

American Chemical Society, Bioconjugate Chemistry, 2(18), p. 530-537, 2007

DOI: 10.1021/bc060234t

Links

Tools

Export citation

Search in Google Scholar

In Vitro and In Vivo Evaluation of a Novel99mTc(CO)3-Pyrazolyl Conjugate ofcyclo-(Arg-Gly-Asp-d-Tyr-Lys)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Radiolabeled peptides containing the Arg-Gly-Asp amino acid sequence (single letter code = RGD) have been studied extensively to target integrin receptors upregulated on tumor cells and neovasculature. Integrins are cell surface transmembrane glycoproteins that exist as alphabeta heterodimers. The alphavbeta3 integrin is known to be overexpressed in many tumor types and is expressed at lower levels in normal tissues. Furthermore, alphavbeta3 and alphavbeta5 subtypes are expressed in neovasculature during angiogenesis. Thus, there is some impetus to image angiogenesis and tumor formation in vivo using RGD-based peptide targeting vectors. In this study, we report the design and development of a new cyclic RGD analogue cyclo-[Arg-Gly-Asp-d-Tyr-Lys(PZ)] (PZ = 3,5-Me2-pz(CH2)2N((CH2)3COOH)(CH2)2NH2) that can be radiolabeled with the [99mTc(CO)3(H2O)3]+ metal aquaion. Radiochemical evaluation of this new conjugate in vitro indicated a facile radiosynthesis of the new 99mTc-RGD conjugate with high radiolabeling yields (>or=95%) and high specific activities. In vitro internalization and blocking assays in alphavbeta3 receptor-positive, human M21 melanoma cancer cells showed the ability of this conjugate to target the integrin receptor with high specificity and selectivity. In vivo pharmacokinetic studies in normal CF-1 mice showed rapid clearance from blood with excretion primarily via/through the renal-urinary system. In vivo accumulation of radioactivity in mice bearing either alphavbeta3 receptor-positive or negative human melanoma tumors showed receptor specific uptake of tracer with accumulations of 2.50 +/- 0.29 and 0.71 +/- 0.08% ID/g in alphavbeta3 integrin positive (M21) and negative (M21L) tumors at 1 h postinjection (p.i.), respectively.