Published in

American Chemical Society, Environmental Science and Technology, 7(46), p. 3795-3802, 2012

DOI: 10.1021/es203970e

Links

Tools

Export citation

Search in Google Scholar

Feather Meal: A Previously Unrecognized Route for Reentry into the Food Supply of Multiple Pharmaceuticals and Personal Care Products (PPCPs)

Journal article published in 2012 by D. C. Love, R. U. Halden ORCID, M. F. Davis, K. E. Nachman
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Antimicrobials used in poultry production have the potential to bioaccumulate in poultry feathers but available data are scarce. Following poultry slaughter, feathers are converted by rendering into feather meal and sold as fertilizer and animal feed, thereby providing a potential pathway for reentry of drugs into the human food supply. We analyzed feather meal (n = 12 samples) for 59 pharmaceuticals and personal care products (PPCPs) using EPA method 1694 employing liquid chromatography tandem mass spectrometry (LC/MS/MS). All samples tested positive and six classes of antimicrobials were detected, with a range of two to ten antimicrobials per sample. Caffeine and acetaminophen were detected in 10 of 12 samples. A number of PPCPs were determined to be heat labile during laboratory simulation of the rendering process. Growth of wild-type E. coli in MacConkey agar was inhibited by sterilized feather meal (p = 0.01) and by the antimicrobial enrofloxacin (p < 0.0001) at levels found in feather meal. Growth of a drug-resistant E. coli strain was not inhibited by sterilized feather meal or enrofloxacin. This is the first study to detect antimicrobial residues in feather meal. Initial results suggest that more studies are needed to better understand potential risks posed to consumers by drug residues in feather meal.