Published in

American Chemical Society, Organic Letters, 13(7), p. 2619-2622, 2005

DOI: 10.1021/ol050780m

Links

Tools

Export citation

Search in Google Scholar

Peptide Bond Isosteres: Ester or ( E )-Alkene in the Backbone of the Collagen Triple Helix

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

[structure: see text] Collagen is the most abundant protein in animals. Interstrand N-H...O=C hydrogen bonds between backbone amide groups form a ladder in the middle of the collagen triple helix. Isosteric replacement of the hydrogen-bond-donating amide with an ester or (E)-alkene markedly decreases the conformational stability of the triple helix. Thus, this recurring hydrogen bond is critical to the structural integrity of collagen. In this context, an ester isostere confers more stability than does an (E)-alkene.