Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 4(188), p. 1992-2000, 2012

DOI: 10.4049/jimmunol.1101620

Links

Tools

Export citation

Search in Google Scholar

Caspase-4 Is Required for Activation of Inflammasomes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract IL-1β and IL-18 are crucial regulators of inflammation and immunity. Both cytokines are initially expressed as inactive precursors, which require processing by the protease caspase-1 for biological activity. Caspase-1 itself is activated in different innate immune complexes called inflammasomes. In addition, caspase-1 activity regulates unconventional protein secretion of many other proteins involved in inflammation and repair. Human caspase-4 is a poorly characterized member of the caspase family, which is supposed to be involved in endoplasmic reticulum stress-induced apoptosis. However, its gene is located on the same locus as the caspase-1 gene, which raises the possibility that caspase-4 plays a role in inflammation. In this study, we show that caspase-4 expression is required for UVB-induced activation of proIL-1β and for unconventional protein secretion by skin-derived keratinocytes. These processes require expression of the nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 inflammasome, and caspase-4 physically interacts with its central molecule caspase-1. As the active site of caspase-4 is required for activation of caspase-1, the latter most likely represents a substrate of caspase-4. Caspase-4 expression is also essential for efficient nucleotide-binding domain leucine-rich repeat containing, Pyrin domain containing-3 and for absent in melanoma 2 inflammasome-dependent proIL-1β activation in macrophages. These results demonstrate an important role of caspase-4 in inflammation and innate immunity through activation of caspase-1. Therefore, caspase-4 represents a novel target for the treatment of (auto)inflammatory diseases.