Dissemin is shutting down on January 1st, 2025

Published in

Frontiers Media, Frontiers in Plant Science, (7), 2016

DOI: 10.3389/fpls.2016.00124

Links

Tools

Export citation

Search in Google Scholar

Long-term in vitro system for maintenance and amplification of root-knot nematodes in Cucumis sativus roots

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Root-knot nematodes (RKN) are polyphagous plant-parasitic roundworms that produce large crop losses, representing a relevant agricultural pest worldwide. After infection, they induce swollen root structures called galls containing giant cells (GCs) indispensable for nematode development. Among efficient control methods are biotechnology-based strategies that require a deep knowledge of underlying molecular processes during the plant-nematode interaction. Methods of achieving this knowledge include the application of molecular biology techniques such as transcriptomics (massive sequencing or microarray hybridization), proteomics or metabolomics. These require aseptic experimental conditions, as undetected contamination with other microorganisms could compromise the interpretation of the results. Herein, we present a simple, efficient and long-term method for nematode amplification on cucumber roots grown in vitro. Amplification of juveniles (J2) from the starting inoculum is around 40-fold. The method was validated for three Meloidogyne species (M. javanica, M. incognita and M. arenaria), producing viable and robust freshly hatched J2s. These can be used for further in vitro infection of different plant species such as Arabidopsis, tobacco and tomato, as well as enough J2s to maintain the population. The method allowed maintenance of around 90 Meloidogyne spp. generations (one every two months) from a single initial female over 15 years.