Links

Tools

Export citation

Search in Google Scholar

The Design of QFT Robust Compensators with Magnitude and Phase Specifications

Journal article published in 2010 by José Carlos Moreno, Baños Alfonso, Manuel Berenguel ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The frequency response is an important tool for practical and efficient design of control systems. Control techniques based on frequency response are of special interest to dealing with important subjects such as the bandwidth and the cost of feedback. Furthermore, these techniques are easily adapted to deal with the uncertainty of the process to control. Quantitative feedback theory (QFT) is an engineering design technique of uncertain feedback systems that uses frequency domain specifications. This paper analyzes the phase specifications problem in frequency domain using QFT. This type of specification is not commonly taken into account due to the fundamental limitations of the linear control given by Bode's integral. An algorithm is proposed aimed at achieving prespecified closed-loop transfer function phase and magnitude variations, taking into account the plant uncertainty. A two-degrees-of-freedom feedback control structure is used and a new type of boundary is defined to satisfy these objectives. As the control effort heavily depends on a good estimation of these boundaries, the proposed algorithm allows avoiding overdesign.