Published in

De Gruyter, International Journal of Chemical Reactor Engineering, 1(7), 2009

DOI: 10.2202/1542-6580.2059

Links

Tools

Export citation

Search in Google Scholar

Optimal Design, Modeling and Simulation of an Ethanol Steam Reforming Reactor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The optimum design, modeling and simulation of a fixed bed multi-tube reformer for the renewable hydrogen production are carried out in the present paper. The analogies between plug flow model and a fixed bed reactor are used as design patterns. The steam reformer is designed to produce enough hydrogen to feed a 200kW fuel cell system (>2.19molH/s) and considering 85% of fuel utilization in the cell electrodes. The reactor prototype is optimized and then analyzed using a multiphysics and axisymmetric model, implemented on FEMLABM(R) where the differential mass balance by convection-diffusion and the energy balance for convection-conduction are solved. The temperature profile is controlled to maximize hydrogen production. The catalyst bed internal profiles and the effect of temperature on ethanol conversion and carbon monoxide production are discussed as well.