Published in

American Chemical Society, Inorganic Chemistry, 12(49), p. 5546-5553, 2010

DOI: 10.1021/ic1004853

Links

Tools

Export citation

Search in Google Scholar

Prediction of Reliable Metal−PH3Bond Energies for Ni, Pd, and Pt in the 0 and +2 Oxidation States

Journal article published in 2010 by Raluca Craciun, Andrew J. Vincent, Kevin H. Shaughnessy ORCID, David A. Dixon
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phosphine-based catalysts play an important role in many metal-catalyzed carbon-carbon bond formation reactions yet reliable values of their bond energies are not available. We have been studying homogeneous catalysts consisting of a phosphine bonded to a Pt, Pd, or Ni. High level electronic structure calculations at the CCSD(T)/complete basis set level were used to predict the M-PH(3) bond energy (BE) for the 0 and +2 oxidation states for M = Ni, Pd, and Pt. The calculated bond energies can then be used, for example, in the design of new catalyst systems. A wide range of exchange-correlation functionals were also evaluated to assess the performance of density functional theory (DFT) for these important bond energies. None of the DFT functionals were able to predict all of the M-PH(3) bond energies to within 5 kcal/mol, and the best functionals were generalized gradient approximation functionals in contrast to the usual hybrid functionals often employed for main group thermochemistry.