Published in

American Chemical Society, Journal of Physical Chemistry C, 2(120), p. 875-885, 2016

DOI: 10.1021/acs.jpcc.5b10517

Links

Tools

Export citation

Search in Google Scholar

Understanding Particle-Size-Dependent Electrochemical Properties of Li<sub>2</sub>MnO<sub>3</sub>-Based Positive Electrode Materials for Rechargeable Lithium Batteries

Journal article published in 2016 by Naoaki Yabuuchi, Kei Kubota ORCID, Yoshinori Aoki, Shinichi Komaba
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electrochemical properties of Li-excess electrode materials, Li1.2Co0.13Ni0.13Mn0.54O2, with different primary particle sizes are studied in Li cells, and phase transition behavior on continuous electrochemical cycles is systematically examined. Although the nanosize (<100 nm) sample delivers a large reversible capacity of 300 mAh g–1 at the initial cycle, capacity retention is not sufficient as a positive electrode material. Moreover, unfavorable phase transition, gradual enrichment of trivalent manganese ions, and lowering structural symmetry is not avoidable on electrochemical cycles for a nanosize sample, which is confirmed by combined techniques of synchrotron X-ray diffraction, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. A submicrosize sample also delivers a large reversible capacity of 250 mAh g–1 even though a slow activation process is observed accompanied with partial oxygen loss and migration oxide ions in the crystal lattice coupled with transition metal migration on the initial charge process. Such an unfavorable phase transition at room temperature is effectively suppressed by the use of a submicrosize sample with low surface area. However, suppression of the phase transition is found to be a kinetically controlled phenomena and is, therefore, unavoidable at elevated temperatures.