Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 1(14), p. 447-470, 2014

DOI: 10.5194/acp-14-447-2014

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 6(13), p. 16961-17019

DOI: 10.5194/acpd-13-16961-2013

Links

Tools

Export citation

Search in Google Scholar

The direct and indirect radiative effects of biogenic secondary organic aerosol

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. We use a global aerosol microphysics model in combination with an offline radiative transfer model to quantify the radiative effect of biogenic secondary organic aerosol (SOA) in the present-day atmosphere. Through its role in particle growth and ageing, the presence of biogenic SOA increases the global annual mean concentration of cloud condensation nuclei (CCN; at 0.2% supersaturation) by 3.6–21.1%, depending upon the yield of SOA production from biogenic volatile organic compounds (BVOCs), and the nature and treatment of concurrent primary carbonaceous emissions. This increase in CCN causes a rise in global annual mean cloud droplet number concentration (CDNC) of 1.9–5.2%, and a global mean first aerosol indirect effect (AIE) of between +0.01 W m−2 and −0.12 W m−2. The radiative impact of biogenic SOA is far greater when biogenic oxidation products also contribute to the very early stages of new particle formation; using two organically mediated mechanisms for new particle formation, we simulate global annual mean first AIEs of −0.22 W m−2 and −0.77 W m−2. The inclusion of biogenic SOA substantially improves the simulated seasonal cycle in the concentration of CCN-sized particles observed at three forested sites. The best correlation is found when the organically mediated nucleation mechanisms are applied, suggesting that the first AIE of biogenic SOA could be as large as −0.77 W m−2. The radiative impact of SOA is sensitive to the presence of anthropogenic emissions. Lower background aerosol concentrations simulated with anthropogenic emissions from 1750 give rise to a greater fractional CCN increase and a more substantial first AIE from biogenic SOA. Consequently, the anthropogenic indirect radiative forcing between 1750 and the present day is sensitive to assumptions about the amount and role of biogenic SOA. We also calculate an annual global mean direct radiative effect of between −0.08 W m−2 and −0.78 W m−2 in the present day, with uncertainty in the amount of SOA produced from the oxidation of BVOCs accounting for most of this range.