Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 18(13), p. 9183-9194, 2013

DOI: 10.5194/acp-13-9183-2013

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 3(13), p. 7431-7461

DOI: 10.5194/acpd-13-7431-2013

Links

Tools

Export citation

Search in Google Scholar

A global model study of the impact of land-use change in Borneo on atmospheric composition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. In this study, a high resolution version of the Cambridge p-TOMCAT chemical transport model is used, along with measurement data from the 2008 NERC-funded Oxidant and Particle Photochemical Processes (OP3) project, to examine the potential impact of the expansion of oil palm in Borneo on atmospheric composition. Several model emission scenarios are run for the OP3 measurement period, incorporating emissions from both global datasets and local flux measurements. Using the OP3 observed isoprene fluxes and OH recycling chemistry in p-TOMCAT substantially improves the comparison between modelled and observed isoprene and OH concentrations relative to using MEGAN isoprene emissions without OH recycling. However, a similar improvement was also achieved without using HOx recycling, by fixing boundary layer isoprene concentrations over Borneo to follow the OP3 observations. An extreme hypothetical future scenario, in which all of Borneo is converted to oil palm plantation, assessed the sensitivity of the model to changes in isoprene and NOx emissions associated with land-use change. This scenario suggested a 70% upper limit on surface ozone increases resulting from land-use change on Borneo, excluding the impact of future changes in emissions elsewhere. Although the largest changes in this scenario occurred directly over Borneo, the model also calculated notable regional changes of O3, OH and other species downwind of Borneo and in the free troposphere.