Published in

De Gruyter, Biological Chemistry, 3(396), p. 185-192, 2014

DOI: 10.1515/hsz-2014-0207

Links

Tools

Export citation

Search in Google Scholar

The emerging role of the peptidome in biomarker discovery and degradome profiling

Journal article published in 2015 by Zon W. Lai, Agnese Petrera, Oliver Schilling ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The peptidome represents the array of endogenous peptides that are present in both the intracellular and extracellular space of the body. Peptides are constantly generated in vivo by active synthesis, and by proteolytic processing of larger precursor proteins, often yielding protein fragments that mediate a variety of physiological functions. Given that aberrant proteolysis is a hallmark of various pathological diseases, many studies have now turned to the peptidome. Differential regulation of endogenous peptides may play a role in many pathological conditions. Mass spectrometry (MS) -based investigation of peptides in a system-wide manner is currently facilitating the identification of potential biomarkers. Furthermore, peptidomic approaches have provided major contributions to the identification of protease-substrate relationships; representing one of the major challenges in understanding and therapeutically exploiting protease function in health and disease. As such, degradomic studies looking for cleavage products via peptidomics in particular, have warranted a significant research interest in recent years. Given that substantial studies are accumulating in the field of peptidomics, this review highlights recent advances of MS-based peptidomic strategies in facilitating the identification of potential peptides as novel clinical markers and protease-substrate profiling.