Published in

Nature Research, Nature Physics, 10(5), p. 718-721, 2009

DOI: 10.1038/nphys1375

Links

Tools

Export citation

Search in Google Scholar

A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+δ

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Angle-resolved photoemission spectroscopy (ARPES) probes the momentum-space electronic structure of materials and provides invaluable information about the high-temperature superconducting cuprates. Likewise, scanning tunnelling spectroscopy (STS) reveals the cuprates real-space inhomogeneous electronic structure. Recently, researchers using STS have exploited quasiparticle interference (QPI)wave-like electrons that scatter off impurities to produce periodic interference patternsto infer properties of the quasiparticles in momentum space. Surprisingly, some interference peaks in Bi2Sr 2CaCu2O8+δ (Bi-2212) are absent beyond the antiferromagnetic zone boundary, implying the dominance of a particular scattering process. Here, we show that ARPES detects no evidence of quasiparticle extinction: quasiparticle-like peaks are measured everywhere on the Fermi surface, evolving smoothly across the antiferromagnetic zone boundary. This apparent contradiction stems from differences in the nature of single-particle (ARPES) and two-particle (STS) processes underlying these probes. Using a simple model, we demonstrate extinction of QPI without implying the loss of quasiparticles beyond the antiferromagnetic zone boundary.