Published in

Elsevier, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2-3(620), p. 437-444

DOI: 10.1016/j.nima.2010.03.143

Links

Tools

Export citation

Search in Google Scholar

Apparatus for simultaneous rheology and small-angle neutron scattering from high-viscosity polymer melts and blends

Journal article published in 2010 by Jitendra Sharma, Stephen M. King ORCID, Leif Bohlin, Nigel Clarke
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In situ study of structural changes in soft matter systems while exposed to shear gives vital information related to the dynamics of polymers. A new shear apparatus has been developed for simultaneous rheology and in situ small-angle neutron scattering (SANS) from high-viscosity polymeric melts and blends. The apparatus described here enables one to perform rheological measurements in a plate–plate geometry under various modes of applied shear viz., steady, oscillatory, and other programmed mode, in a wide range of temperatures that can be varied from ambient to 550 K. A major advantage of this instrument compared to other counterparts (available elsewhere) for a similar geometry of operation is that it is also equipped with a strain sensor for rheological measurements along with the capability to offer both steady state and oscillatory shearing measurements with a single instrument, something hitherto not possible due to the limitations imposed by the conceived design of the instruments. Besides, the parallel plate geometry of the apparatus utilized here offers a distinctive edge over Couette type cells used for similar purposes as the latter is often not suitable for studies on well-entangled concentrated polymeric systems due to high viscosity and associated large sample volume requirements. The details of the design, construction and operation of such device, the Rheo-SANS apparatus, are described in this paper. Preliminary test data obtained from the initial experiments on different samples of blends of deuterated polystyrene and poly(vinyl methyl ether) are presented and discussed within the context of theories known to predict their behaviour.