Published in

American Institute of Physics, Applied Physics Letters, 4(108), p. 041603, 2016

DOI: 10.1063/1.4940974

Links

Tools

Export citation

Search in Google Scholar

Venting temperature determines surface chemistry of magnetron sputtered TiN films

Journal article published in 2016 by Grzegorz Greczynski ORCID, S. Mraz, Lars Hultman ORCID, J. M. Schneider
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature T-v, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that T-v has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. ; Funding Agencies|German Research Foundation (DFG) [SFB-TR 87]; VINN Excellence Center Functional Nanoscale Materials (FunMat) [2005-02666]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]; Knut and Alice Wallenberg Foundation [2011.0143]