Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Plasma Physics and Controlled Fusion, 10(39), p. 1615-1634

DOI: 10.1088/0741-3335/39/10/009

Links

Tools

Export citation

Search in Google Scholar

Transport studies of high-Zelements in neon edge radiation cooled discharges in TEXTOR-94

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

High-Z materials as tungsten are intended to be used in future fusion reactors due to their low sputtering rates and high melting points. In this context the important question is whether the use of high-Z materials is compatible with the concept of a cold radiative boundary. To investigate the local release and transport behaviour of the high-Z impurities, Mo and W test limiters were used in auxiliary heated discharges under different radiation scenarios with neon seeding. In addition, laser blow-off of tungsten as well as xenon gas puffing were performed. In some particular discharge conditions impurity accumulation was observed in the plasma core, which in the case of ohmic discharges led to minor disruptions. The connection between the accumulation and the evolution of the current density profiles is discussed. A transport analysis is made, in order to compare the observations with the neoclassical theory. It is shown that with neon the impurity–impurity driven fluxes enhance the high-Z concentration in the plasma core. However, if the source of the high-Z elements is significantly reduced, by increasing the plasma density, a development of an accumulation instability can be avoided.