Published in

American Physiological Society, American Journal of Physiology - Renal Physiology, 6(301), p. F1231-F1241

DOI: 10.1152/ajprenal.00736.2010

Links

Tools

Export citation

Search in Google Scholar

Hypothermic renal perfusion during aortic surgery reduces the presence of lipocalin-2 and preserves renal extraction of dimethylarginines in rats

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cold perfusion through the renal arteries during renal ischemia has been suggested to diminish postoperative renal damage after juxtarenal aortic aneurysm repair. As the kidneys play a key role in dimethylarginine metabolism, which in turn is associated with renal hemodynamics, we hypothesized that the protective effect of cold perfusion is associated with a preserved renal extraction of dimethylarginines. Renal ischemia was induced in three groups of anesthetized Wistar rats ( n = 7/group), which underwent suprarenal aortic clamping (45 min) with no perfusion ( group 1), renal perfusion with 37°C saline ( group 2), or renal perfusion with 4°C saline ( group 3), respectively, followed by 90 min of renal reperfusion in all groups. The sham group had no clamping. In group 3 (renal ischemia with cold perfusion), postoperative serum creatinine levels as well as the presence of luminal lipocalin-2 and its associated brush-border damage were lower compared with groups 1 and 2 ( P < 0.05). Also, renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine as well as the arginine/ADMA ratio, which defines the bioavailability of nitric oxide, remained intact in group 3 only ( P < 0.04). The arginine/ADMA ratio correlated with cortical flow, lipocalin-2, and creatinine rises. Warm and cold renal perfusion ( groups 2 and 3) during ischemia were similarly effective in lowering protein nitrosylation levels, renal leukocyte accumulation, neutrophil gelatinase-associated lipocalin (NGAL) expression in distal tubules, and urine NGAL ( P < 0.05). These data support the use of cold renal perfusion during renal ischemia in situations where renal ischemia is inevitable, as it reduces tubular damage and preserves renal extraction of dimethylarginines. Renal perfusion with saline per se during renal ischemia is effective in diminishing renal leukocyte accumulation and oxidative stress.