Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BMC Genomics, 1(14), 2013

DOI: 10.1186/1471-2164-14-580

Links

Tools

Export citation

Search in Google Scholar

Genome-wide modeling of complex phenotypes in Caenorhabditis elegans and Drosophila melanogaster

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The genetic and molecular basis for many intermediate and end stage phenotypes in model systems such as C. elegans and D. melanogaster has long been known to involve pleiotropic effects and complex multigenic interactions. Gene sets are groups of genes that contribute to multiple biological or molecular phenomena. They have been used in the analysis of large molecular datasets such as microarray data, Next Generation sequencing, and other genomic datasets to reveal pleiotropic and multigenic contributions to phenotypic outcomes. Many model systems lack species specific organized phenotype based gene sets to enable high throughput analysis of large molecular datasets. Results and discussion Here, we describe two novel collections of gene sets in C. elegans and D. melanogaster that are based exclusively on genetically determined phenotypes and use a controlled phenotypic ontology. We use these collections to build genome-wide models of thousands of defined phenotypes in both model species. In addition, we demonstrate the utility of these gene sets in systems analysis and in analysis of gene expression-based molecular datasets and show how they are useful in analysis of genomic datasets connecting multigenic gene inputs to complex phenotypes. Conclusions Phenotypic based gene sets in both C. elegans and D. melanogaster are developed, characterized, and shown to be useful in the analysis of large scale species-specific genomic datasets. These phenotypic gene set collections will contribute to the understanding of complex phenotypic outcomes in these model systems.