Published in

BioMed Central, BMC Genomics, 1(14), 2013

DOI: 10.1186/1471-2164-14-492

Links

Tools

Export citation

Search in Google Scholar

A systematic evaluation of hybridization-based mouse exome capture system

Journal article published in 2013 by Qingsong Gao, Wei Sun ORCID, Xintian You, Sebastian Froehler, Wei Chen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Exome sequencing is increasingly used to search for phenotypically-relevant sequence variants in the mouse genome. All of the current hybridization-based mouse exome capture systems are designed based on the genome reference sequences of the C57BL/6 J strain. Given that the substantial sequence divergence exists between C57BL/6 J and other distantly-related strains, the impact of sequence divergence on the efficiency of such capture systems needs to be systematically evaluated before they can be widely applied to the study of those strains. Results Using the Agilent SureSelect mouse exome capture system, we performed exome sequencing on F1 generation hybrid mice that were derived by crossing two divergent strains, C57BL/6 J and SPRET/EiJ. Our results showed that the C57BL/6 J-based probes captured the sequences derived from C57BL/6 J alleles more efficiently and that the bias was higher for the target regions with greater sequence divergence. At low sequencing depths, the bias also affected the efficiency of variant detection. However, the effects became negligible when sufficient sequencing depth was achieved. Conclusion Sufficient sequence depth needs to be planned to match the sequence divergence between C57BL/6 J and the strain to be studied, when the C57BL/6 J–based Agilent SureSelect exome capture system is to be used.