Published in

Hans Publishers, Astronomy & Astrophysics, 1(470), p. 119-122

DOI: 10.1051/0004-6361:20077053

Links

Tools

Export citation

Search in Google Scholar

Shallow decay phase of GRB X-ray afterglows from relativistic wind bubbles

Journal article published in 2007 by Yun-Wei Yu ORCID, Zi-Gao Dai
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The postburst object of a GRB is likely to be a highly magnetized, rapidly rotating compact object (e.g., a millisecond magnetar), which could produce an ultrarelativistic electron-positron-pair wind. The interaction of such a wind with an outwardly expanding fireball ejected during the burst leads to a relativistic wind bubble (RWB). We numerically calculate the dynamics and radiative properties of RWBs and use this model to explain the shallow decay phase of the early X-ray afterglows observed by Swift. We find that RWBs can fall into two types: forward-shock-dominated and reverse-shock-dominated bubbles. Their radiation during a period of $∼ 10^{2}-10^{5}$ seconds is dominated by the shocked medium and the shocked wind, respectively, based on different magnetic energy fractions of the shocked materials. For both types, the resulting light curves always have a shallow decay phase. In addition, we provide an example fit to the X-ray afterglows of GRB 060813 and GRB 060814 and show that they could be produced by forward-shock-dominated and reverse-shock-dominated bubbles, respectively. This implies that, for some early afterglows (e.g., GRB 060814), the long-lasting reverse shock emission is strong enough to explain their shallow decay phase. Comment: 5 pages, 4 figures, Accepted for Publication in A&A