Wiley, Archives of Insect Biochemistry and Physiology, 1(65), p. 20-28, 2007
DOI: 10.1002/arch.20174
Full text: Unavailable
Superoxide anion (O(-) (2)) and nitric oxide (NO) generation in Dactylopius coccus hemolymph obtained by perfusion and activated with zymosan was studied. Activated hemolymph reduced 3-[4,5 dimethylthiazolil-2]-2,5-diphenyl tetrazolium bromide. This reduction was prevented by superoxide dismutase (SOD) indicating O(-) (2) generation. This activity was dependent on temperature, and hemolymph incubated at 75 degrees C lost its activity. Chromatocytes incubated with zymosan released their content and produced O(-) (2). Activated hemolymph also produced NO and this activity was prevented in the presence of NG-nitro-L-arginine methyl ester, suggesting that nitric oxide synthase (NOS) might be present in D. coccus hemolymph. The probable source of O(-) (2) in the D. coccus hemolymph is the anthraquinone oxidation, since commercial carminic dye produced O(-) (2) during its oxidation by Agaricus bisporus tyrosinase. Gram+ Micrococcus luteus exposed to activated hemolymph were killed in vitro, and addition of NG-nitro-L-arginine methyl ester and D-Mannitol (a hydroxyl radical scavenger) prevented their killing. The cytotoxic effect produced by the activated hemolymph was not observed with the Gram- bacteria Serratia marcescens. These results suggest that D. coccus activated hemolymph generates reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) that may limit M. luteus growth.