Published in

MDPI, Energies, 8(8), p. 7805-7817, 2015

DOI: 10.3390/en8087805

Links

Tools

Export citation

Search in Google Scholar

Enhancement of Oxygen Reduction and Mitigation of Ionomer Dry-Out Using Insoluble Heteropoly Acids in Intermediate Temperature Polymer-Electrolyte Membrane Fuel Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The use of Cs0.5H0.5PW12O40 insoluble salt as a superacid promoter in the catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC) has been investigated. An increase of performance has been recorded at intermediate temperatures (110-130 °C) and under low relative humidity (R.H.). The promoter appears to mitigate the ionomer dry-out effects in the catalytic layer and produces an increase of the extent of the catalyst-electrolyte interface as demonstrated by cyclic voltammetry analysis. These effects are also corroborated by a significant decrease of polarization resistance at intermediate temperatures. Such characteristics have been demonstrated for a conventional membrane-electrode assembly based on a Pt-Co alloy and a Nafion 115 membrane.