Elsevier, European Journal of Pharmacology, (769), p. 162-166, 2015
DOI: 10.1016/j.ejphar.2015.11.013
Full text: Download
Recent publications suggest that α1-adrenoceptor stimulation by exogenous agonists such as phenylephrine in resistance arteries cause contraction through the release of ATP from within the vascular smooth muscle cells. This ATP exits the cell through pannexin-1 channels to act back "autocrine-like" on P2 receptors on the smooth muscle that cause the contraction. In this work we directly test this hypothesis by using a selective P2×1 purinoceptor antagonist NF449 (1-10µM) against phenylephrine and ATP concentration-response curves in small mesenteric arteries of the rat and thoracodorsal arteries of the mouse. We show that NF449 is a simple competitive antagonist of ATP with a pKB of 6.43 and 6.41 in rat and mouse arteries, respectively, but did not antagonise phenylephrine concentration-response curves. This work cautions against the growing overstated role of the reputed pannexin-1/ATP release axis following α1-adrenoceptor activation in small resistance arteries.