Published in

American Chemical Society, Journal of Medicinal Chemistry, 5(55), p. 2367-2375, 2012

DOI: 10.1021/jm201600e

Links

Tools

Export citation

Search in Google Scholar

Synthesis and Characterization of Novel 2-Amino-3-benzoylthiophene Derivatives as Biased Allosteric Agonists and Modulators of the Adenosine A(1) Receptor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of novel 2-amino-3-benzoylthiophenes (2A3BTs) were screened using a functional assay of A(1)R mediated phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in intact CHO cells to identify potential agonistic effects as well as the ability to allosterically modulate the activity of the orthosteric agonist, R-PIA. Two derivatives, 8h and 8i, differing only in terms of the absence or presence of an electron-withdrawing group on the benzoyl moiety of the 2A3BT scaffold, were identified as biased allosteric agonists and positive allosteric modulators of agonist function at the adenosine A(1) receptor (A(1)R) in two different functional assays. Our findings indicate that subtle structural variations can promote functionally distinct receptor conformational states.