Full text: Download
The development of an effective anode material with hierarchical multi-dimensional architecture is conducive to further improve the cell performance of photovoltaic devices. Herein we introduce an intriguing three-dimensional (3D) hierarchically branched hollow sphere-nanowire hybrid TiO2 photoanode for promising CdS and CdSe quantum dots co-sensitized solar cells application. The demonstrated 3D hierarchically hybrid photoanode owns a considerably high specific surface area while maintaining roomy space and providing ample porosity for efficient electrolyte infiltration. Moreover, the outstanding light scattering ability of such multi-dimensional architecture leads to an enhancement of light utilization efficiency and thus significantly enhanced short-circuit photocurrent. The control over the pore size of TiO2 hollow spheres and the optimizations on the newly developed chemical bath deposited (CBD) cuprous sulfide (Cu2S)/FTO counter electrode eventually yields power conversion efficiency as high as 6.01% for CdS/CdSe based quantum dot-sensitized solar cells (QDSSCs).