Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, ACS Nano, 10(4), p. 6146-6152, 2010

DOI: 10.1021/nn1017389

Links

Tools

Export citation

Search in Google Scholar

Toward high throughput interconvertible graphane-to-graphene growth and patterning

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report a new route to prepare high quality, monolayer graphene by the dehydrogenation of graphane-like film grown by plasma-enhanced chemical vapor deposition. Large-area monolayer graphane-like film is first produced by remote-discharged radio frequency plasma beam deposition at 650 °C on Cu/Ti-coated SiO(2)-Si. The advantages of the plasma deposition include very short deposition time (<5 min) and a lower growth temperature of 650 °C compared to the current thermal chemical vapor deposition approach (1000 °C). Near edge X-ray adsorption, Raman spectroscopy, and transmission electron microscopy as well as scanning tunneling microscopy have been applied to characterize the graphane-to-graphene transition for the as-deposited films. The fingerprint quantum hall effect of monolayer graphene can be obtained on the fully dehydrogenated graphane-like film; four fully quantized half-integer plateaus are observed. The interconvertibility between graphane-like and graphene here opens up a possible route for the fabrication of regions with varying conductivity in a single deposition system using maskless, laser writing.