Published in

Elsevier, Toxicology, 1-3(260), p. 60-67

DOI: 10.1016/j.tox.2009.03.010

Links

Tools

Export citation

Search in Google Scholar

Reactive oxygen species accumulation contributes to gambogic acid-induced apoptosis in human hepatoma SMMC-7721 cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It is reported that gambogic acid (GA), the main active compound of gamboge which is a dry resin extracted from Garcinia hanburyi tree, has potent antitumor activity both in vivo and in vitro. Activation of mitochondrial apoptotic pathway in cancer cells is one effective therapy for cancer treatment. In the present study, we focus on the effect of GA on induction of reactive oxygen species (ROS) accumulation and triggering the mitochondrial signaling pathway in human hepatoma SMMC-7721 cells. The results indicated that GA induced ROS accumulation and collapse of mitochondrial membrane potential in SMMC-7721 cells in a concentration-dependent manner and subsequently induced that release of Cytochrome c and apoptosis-inducing factor from mitochondria to cytosol, which inhibited ATP generation and induced apoptosis in the cells. Moreover, GA elevated the phosphorylation of c-Jun-N-terminal protein kinase (JNK) and p38, which was the downstream effect of ROS accumulation. Furthermore, N-acetylcysteine, a ROS production inhibitor, partly reversed the activation of JNK and p38 and the induction of apoptosis in GA-treated cells. Collectively, our study demonstrated that accumulation of ROS played an important role in GA-induced mitochondrial signaling pathway, which provided further theoretical support for the application of GA as a promising anticancer agent.