Published in

Wiley, Clinical Endocrinology, 2(80), p. 169-181, 2014

DOI: 10.1111/cen.12368

Links

Tools

Export citation

Search in Google Scholar

Effects of Vitamin D in Skeletal Muscle: Falls, Strength, Athletic Performance and Insulin Sensitivity.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Accompanying the high rates of vitamin D deficiency observed in many countries, there is increasing interest in the physiological functions of vitamin D. Vitamin D is recognised to exert extra-skeletal actions in addition to its classic roles in bone and mineral homeostasis. Here we review the evidence for vitamin D's actions in muscle on the basis of observational studies, clinical trials and basic research. Numerous observational studies link vitamin D deficiency with muscle weakness and sarcopaenia. Randomised trials predominantly support an effect of vitamin D supplementation and the prevention of falls in older or institutionalised patients. Studies have also examined the effect of vitamin D in athletic performance, both inferentially by UV radiation and directly by vitamin D supplementation. Effects of vitamin D in muscle metabolic function, specifically insulin sensitivity, are also addressed in this review. At a mechanistic level, animal studies have evaluated the roles of vitamin D and associated minerals, calcium and phosphate, in muscle function. In vitro studies have identified molecular pathways by which vitamin D regulates muscle cell signalling and gene expression. This review evaluates evidence for the various roles of vitamin D in skeletal muscle and discusses controversies that have made this a dynamic field of research. This article is protected by copyright. All rights reserved.