Published in

American Chemical Society, Energy and Fuels, 7(25), p. 2917-2926, 2011

DOI: 10.1021/ef2006222

Links

Tools

Export citation

Search in Google Scholar

High-Temperature Release of SO2 from Calcined Cement Raw Materials

Journal article published in 2011 by Anders R. Nielsen, Morten B. Larsen, Peter Glarborg ORCID, Kim Dam-Johansen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

During combustion of alternative fuels in the material inlet end of cement rotary kilns, local reducing conditions may occur and cause reductive decomposition of sulfates from calcined cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2 concentration, which may cause deposit formation in the kiln system. In this study, the release of sulfur from calcined cement raw materials under both oxidizing and reducing conditions is investigated. The investigations include thermodynamic equilibrium calculations in the temperature interval of 800–1500 °C and experiments in a tube furnace reactor in the temperature interval of 900–1100 °C. The investigated conditions resemble actual conditions in the material inlet end of cement rotary kilns. It was found that the sulfates CaSO4, K2SO4, and Na2SO4 were all stable under oxidizing conditions but began to decompose under reducing conditions. Particularly, CaSO4 was sensitive to reducing conditions. The sulfur release was most significant if the gas atmosphere frequently shifted between oxidizing and reducing conditions. An increasing temperature from 900 to 1100 °C under alternating oxidizing and reducing conditions was also observed to increase the sulfur release from the calcined raw materials by a factor of 3, from 14 to 48%.