Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Cerebral Cortex, 7(23), p. 1731-1741, 2012

DOI: 10.1093/cercor/bhs168

Links

Tools

Export citation

Search in Google Scholar

Cannabinoid Modulation of Backpropagating Action Potential-Induced Calcium Transients in Layer 2/3 Pyramidal Neurons

Journal article published in 2012 by Lawrence S. Hsieh ORCID, Eric S. Levine
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Endocannabinoids (eCBs) play a prominent role in regulating synaptic signaling throughout the brain. In layer 2/3 of the neocortex, eCB-mediated suppression of GABA release results in an enhanced excitability of pyramidal neurons (PNs). The eCB system is also involved in spike timing-dependent plasticity that is dependent on backpropagating action potentials (bAPs). Dendritic backpropagation plays an important role in many aspects of neuronal function, and can be modulated by intrinsic dendritic conductances as well as by synaptic inputs. The present studies explored a role for the eCB system in modulating backpropagation in PN dendrites. Using dendritic calcium imaging and somatic patch clamp recordings from mouse somatosensory cortical slices, we found that activation of type 1 cannabinoid receptors potentiated bAP-induced calcium transients in apical dendrites of layer 2/3 but not layer 5 PNs. This effect was mediated by suppression of GABAergic transmission, because it was prevented by a GABA(A) receptor antagonist and was correlated with cannabinoid suppression of inhibitory synaptic activity. Finally, we found that activity-dependent eCB release during depolarization-induced suppression of inhibition enhanced bAP-induced dendritic calcium transients. Taken together, these results point to a potentially important role for the eCB system in regulating dendritic backpropagation in layer 2/3 PNs.