Published in

American Chemical Society, Journal of Physical Chemistry Letters, 22(3), p. 3373-3378

DOI: 10.1021/jz301325z

Links

Tools

Export citation

Search in Google Scholar

Two-Dimensional Superlattice: Modulation of Band Gaps in Graphene-Based Monolayer Carbon Superlattices

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel carbon allotrope consisting of parallel zigzag and armchair chains alternatively each other (10 atoms/cell, named pza-C-10) was discovered. The calculated band gap of pza-C-10 is 0.31 (0.71) eV with PBE (HSE06), and thus the new member of carbon family is a semiconductor. The pza-C-10 sheet not only is thermodynamically more stable than the other known semiconducting carbon sheets, but also it can perfectly graft with graphene. The unprecedented properties of pza-C-10 provide a new approach of modulating intrinsic band gap through forming graphene-based monolayer carbon superlattices (GSLs). The band gaps of GSLs with zigzag type of interface oscillate between semiconducting and semimetallic (mostly at the Dirac point) states as the number of zigzag chains increases, showing quantum size effect. The 2D superlattice achieved in GSLs opens a new strategy to design the crystal structures and modulate the electronic properties of 2D materials, nanoribbons, and nanotubes.