Published in

Springer Verlag, Journal of Sol-Gel Science and Technology, 3(64), p. 750-755

DOI: 10.1007/s10971-012-2907-3

Links

Tools

Export citation

Search in Google Scholar

Synthesis of ZnO nanorods and their application in quantum dot sensitized solar cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ZnO nanorod thin films of different thicknesses and CdS quantum dots have been prepared by chemical method. X-ray diffraction pattern reveals that the CdS quantum dot and ZnO nanorods are of hexagonal structure. Field emission scanning electron microscope images show that the diameter of hexagonal shaped ZnO nanorods ranges from 110 to 200 nm and the length of the nanorod vary from 1.3 to 4.7 μm. CdS quantum dots with average size of 4 nm have been deposited onto ZnO nanorod surface using successive ionic layer adsorption and reaction method and the assembly of CdS quantum dot with ZnO nanorod has been used as photo-electrode in quantum dot sensitized solar cells. The efficiency of the fabricated CdS quantum dot-sensitized ZnO nanorod-based solar cell is 1.10 % and is the best efficiency reported so far for this type of solar cells.