Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Nanotechnology, 3(25), p. 035602

DOI: 10.1088/0957-4484/25/3/035602

Links

Tools

Export citation

Search in Google Scholar

Directed self-assembled crystalline oligomer domains on graphene and graphite

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We observe the formation of thin films of fibre-like aggregates from the prototypical organic semiconductor molecule para-hexaphenylene (p-6P) on graphite thin flakes and on monolayer graphene. Using atomic force microscopy, scanning electron microscopy, x-ray diffraction, polarized fluorescence microscopy, and bireflectance microscopy, the molecular orientations on the surface are deduced and correlated to both the morphology as well as to the high-symmetry directions of the graphitic surface: the molecules align with their long axis at ±11° with respect to a high-symmetry direction. The results show that the graphene surface can be used as a growth substrate to direct the self-assembly of organic molecular thin films and nanofibres, both with and without lithographical processing.