Published in

American Society for Microbiology, Infection and Immunity, 10(81), p. 3534-3551, 2013

DOI: 10.1128/iai.00750-13

Links

Tools

Export citation

Search in Google Scholar

Role of Energy Sensor TlpD of Helicobacter pylori in Gerbil Colonization and Genome Analyses after Adaptation in the Gerbil

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Helicobacter pylori maintains colonization in its human host using a limited set of taxis sensors. TlpD is a proposed energy taxis sensor of H. pylori and dominant under environmental conditions of low bacterial energy yield. We studied the impact of H. pylori TlpD on colonization in vivo using a gerbil infection model which closely mimics the gastric physiology of humans. A gerbil-adapted H. pylori strain, HP87 P7, showed energy-dependent behavior, while its isogenic tlpD mutant lost it. A TlpD-complemented strain regained the wild-type phenotype. Infection of gerbils with the complemented strain demonstrated that TlpD is important for persistent infection in the antrum and corpus and suggested a role of TlpD in horizontal navigation and persistent corpus colonization. As a part of the full characterization of the model and to gain insight into the genetic basis of H. pylori adaptation to the gerbil, we determined the complete genome sequences of the gerbil-adapted strain HP87 P7, two HP87 P7 tlpD mutants before and after gerbil passage, and the original human isolate, HP87. The integrity of the genome, including that of a functional cag pathogenicity island, was maintained after gerbil adaptation. Genetic and phenotypic differences between the strains were observed. Major differences between the gerbil-adapted strain and the human isolate emerged, including evidence of recent recombination. Passage of the tlpD mutant through the gerbil selected for gain-of-function variation in a fucosyltransferase gene, futC (HP0093). In conclusion, a gerbil-adapted H. pylori strain with a stable genome has helped to establish that TlpD has important functions for persistent colonization in the stomach.