Published in

American Institute of Physics, Journal of Applied Physics, 2(113), p. 024103

DOI: 10.1063/1.4775493

Links

Tools

Export citation

Search in Google Scholar

Reverse Boundary Layer Capacitor Model in Glass/Ceramic Composites for Energy Storage Applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Reverse boundary layer capacitor (RBLC) configuration model, where the grain boundary has a higher electrical conductivity than the grain, is proposed in glass/ceramic composites for dielectric energy storage applications. By introducing glass additives as grain boundaries with electrical conductivity higher than ceramic grains, the steady electric field across grains can be larger than grain boundaries as desired due to the conductivity difference. The breakdown field is thus expected to increase in the RBLC-type brick wall model because of the field distribution. The equivalent circuit, grain boundary conductivity dependence of energy density, low-loss frequency range of the RBLC model are discussed. The simulation results suggest that the RBLC approach has advantages in overall energy density, compared with normal insulating glass phase composites.