Dissemin is shutting down on January 1st, 2025

Published in

Bentham Science Publishers, Mini-Reviews in Organic Chemistry, 1(11), p. 4-14

DOI: 10.2174/1570193x1101140402100131

Links

Tools

Export citation

Search in Google Scholar

Snake Venom Proteins: Development into Antimicrobial and Wound Healing Agents

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Infectious diseases are a significant cause of morbidity and mortality worldwide, accounting for approximately 50% of all deaths in tropical countries and as much as 20% of deaths in the USA. The emergence of multi-drug resistant (MDR) strains makes the risk of these infections even more threatening and an important public health problem thereby increasing need of new agents for fighting pathogens. In this review, the remarkable antibacterial properties possessed by various snake venoms (Crotalide, Elapidae, and Viperidae families) were discussed and in particular phospholipase A2s (PLA2s) that have emerged from various studies as potential in the last few years. Group IIA PLA2s are the most potent among the snake venom (sv)PLA2s against various types of bacteria. Further, antibacterial derivatives from PLA2s, e.g. peptides derived from the C-terminal sequence of Lys49-PLA2s (amino acids 115-129), kill bacteria and cause severe membrane-damaging effects. Mechanisms of binding to the bacterial surface and subsequent killing by peptides are based on positive charge, hydrophobicity, and length. These peptide candidates are easy to design and synthesize in pure form (~95% purity). Such peptides may be potentially useful in the clinic as new antimicrobials for combating infections due to antibiotic-resistant bacteria that include methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus in the near future.