Published in

American Institute of Physics, Applied Physics Letters, 23(101), p. 233108

DOI: 10.1063/1.4769214

Links

Tools

Export citation

Search in Google Scholar

The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report on the use of time resolved X-ray diffraction to measure the dynamics of strain in laser-excited graphite film of nanometer thickness, obtained by chemical vapour deposition (CVD). Heat transport in the CVD film is simulated with a 1-dimensional heat diffusion model. We find the experimental data to be consistent with a c-axis thermal conductivity of ∼0.7 W m−1 K−1. This value is four orders of magnitude lower than the thermal conductivity in-plane, confirming recent theoretical calculations of the thermal conductivity of multilayer graphene.