Published in

MDPI, Remote Sensing, 2(8), p. 92, 2016

DOI: 10.3390/rs8020092

Links

Tools

Export citation

Search in Google Scholar

Detection of Spatio-Temporal Changes of Norway Spruce Forest Stands in Ore Mountains Using Landsat Time Series and Airborne Hyperspectral Imagery

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The study focuses on spatio-temporal changes in the physiological status of the Norway spruce forests located at the central and western parts of the Ore Mountains (northwestern part of the Czech Republic), which suffered from severe environmental pollution from the 1970s to the 1990s. The situation started improving after the pollution loads decreased significantly at the end of the 1990s. The general trends in forest recovery were studied using the tasseled cap transformation and disturbance index (DI) extracted from the 1985–2015 time series of Landsat data. In addition, 16 vegetation indices (VIs) extracted from airborne hyperspectral (HS) data acquired in 1998 using the Advanced Solid-State Array Spectroradiometer (ASAS) and in 2013 using the Airborne Prism Experiment (APEX) were used to study changes in forest health. The forest health status analysis of HS image data was performed at two levels of spatial resolution; at a tree level (original 2.0 m spatial resolution), as well as at a forest stand level (generalized to 6.0 m spatial resolution). The temporal changes were studied primarily using the VOG1 vegetation index (VI) as it was showing high and stable sensitivity to forest damage for both spatial resolutions considered. In 1998, significant differences between the moderately to heavily damaged (central Ore Mountains) and initially damaged (western Ore Mountains) stands were detected for all the VIs tested. In 2013, the stands in the central Ore Mountains exhibited VI values much closer to the global mean, indicating an improvement in their health status. This result fully confirms the finding of the Landsat time series analysis. The greatest difference in Disturbance Index (DI) values between the central (1998: 0.37) and western Ore Mountains stands (1998: −1.21) could be seen at the end of the 1990s. Nonetheless, levelling of the physiological status of Norway spruce was observed for the central and western parts of the Ore Mountains in 2013 (mean DI values −1.04 (western) and −0.66 (central)). Although the differences between originally moderately-to-heavily damaged, and initially damaged stands generally levelled out by 2013, it is still possible to detect signs of the previous damage in some cases.