Published in

Springer Verlag, Russian Chemical Bulletin, 11(53), p. 2532-2541

DOI: 10.1007/s11172-005-0150-6

Links

Tools

Export citation

Search in Google Scholar

Monolayers and Langmuir-Blodgett films of crown-substituted phthalocyanines

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Tetra-15-crown-5-phthalocyanine ligand and its ruthenium complex with axial CO and MeOH groups were synthesized. The properties of their monolayers and Langmuir-Blodgett films were studied. In the case of the ligand, monolayer films of molecular associates are formed. The compatibility of the ligand and stearic acid in a mixed binary monolayer was established. Stearic acid improves the ligand distribution over the water surface and results in the formation of monolayer associates immobilized in its matrix. The condensation effect of Na+ cations on the mixed monolayers was found. The ruthenium complex (R4Pc)Ru(MeOH)(CO) forms stable true monolayers. The macrocycle planes in stacking are inclined relatively to the normal to the subphase surface by an angle of 25. The Langmuir-Blodgett films of the complex were established to have redox peaks. A high electrochemical stability of the Langmuir-Blodgett films and a high electroactivity of phthalocyanine rings were demonstrated. It was shown by impedance spectroscopy that the binding of Na+ and K+ ions by Langmuir-Blodgett films of the (R4Pc)Ru(MeOH)(CO) complex results in an increase in the impedance values in a region of medium frequencies by three and five times, respectively.